Unique Characteristics of the Pyrrolysine System in the 7th Order of Methanogens: Implications for the Evolution of a Genetic Code Expansion Cassette
نویسندگان
چکیده
Pyrrolysine (Pyl), the 22nd proteogenic amino acid, was restricted until recently to few organisms. Its translational use necessitates the presence of enzymes for synthesizing it from lysine, a dedicated amber stop codon suppressor tRNA, and a specific amino-acyl tRNA synthetase. The three genomes of the recently proposed Thermoplasmata-related 7th order of methanogens contain the complete genetic set for Pyl synthesis and its translational use. Here, we have analyzed the genomic features of the Pyl-coding system in these three genomes with those previously known from Bacteria and Archaea and analyzed the phylogeny of each component. This shows unique peculiarities, notably an amber tRNA(Pyl) with an imperfect anticodon stem and a shortened tRNA(Pyl) synthetase. Phylogenetic analysis indicates that a Pyl-coding system was present in the ancestor of the seventh order of methanogens and appears more closely related to Bacteria than to Methanosarcinaceae, suggesting the involvement of lateral gene transfer in the spreading of pyrrolysine between the two prokaryotic domains. We propose that the Pyl-coding system likely emerged once in Archaea, in a hydrogenotrophic and methanol-H2-dependent methylotrophic methanogen. The close relationship between methanogenesis and the Pyl system provides a possible example of expansion of a still evolving genetic code, shaped by metabolic requirements.
منابع مشابه
Corrigendum to “Unique Characteristics of the Pyrrolysine System in the 7th Order of Methanogens: Implications for the Evolution of a Genetic Code Expansion Cassette”
[This corrects the article DOI: 10.1155/2014/374146.].
متن کاملA natural genetic code expansion cassette enables transmissible biosynthesis and genetic encoding of pyrrolysine.
Pyrrolysine has entered natural genetic codes by the translation of UAG, a canonical stop codon. UAG translation as pyrrolysine requires the pylT gene product, an amber-decoding tRNA(Pyl) that is aminoacylated with pyrrolysine by the pyrrolysyl-tRNA synthetase produced from the pylS gene. The pylTS genes form a gene cluster with pylBCD, whose functions have not been investigated. The pylTSBCD g...
متن کاملI-16: The Evolution of Morality and Implications for Animal Usage
The propensity to show moral behaviour has evolved in all animals living in complex societies as it promotes social stability. All major religions provide a structure for a moral code. The code is valuable in the societies where the religions have influence. The most important aspects of morality are the same in all countries. Because of their moral code, people consider that they have obligati...
متن کاملDesigning a trust-based recommender system in Social Rating Networks
One of the most common styles of business today is electronic business, since it is considered as a principal mean for financial transactions among advanced countries. In view of the fact that due to the evolution of human knowledge and the increase of expectations following that, traditional marketing in electronic business cannot meet current generation’s needs, in order to survive, organizat...
متن کاملPyrrolysyl-tRNA synthetase, an aminoacyl-tRNA synthetase for genetic code expansion.
Genetic code expansion (GCE) has become a central topic of synthetic biology. GCE relies on engineered aminoacyl-tRNA synthetases (aaRSs) and a cognate tRNA species to allow codon reassignment by co-translational insertion of non-canonical amino acids (ncAAs) into proteins. Introduction of such amino acids increases the chemical diversity of recombinant proteins endowing them with novel propert...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014